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Table 2. Results of optimization for Task 2

Algorithm GA MA

Best 1.714× 108 1.611× 108

Mean 3.118× 108 1.748× 108

Worst 6.114× 108 1.914× 108

StD 1.009× 108 7.235× 106

Table 3. Comparison of delayed orders

Task 1 Task 2
manual GA MA manual GA MA

Best 13 13 17 16
Mean 53 22 13 61 31 17
Worst 42 16 56 19

known to be NP-hard, we have decided to use stochastic optimization
approach called genetic algorithm (GA). Due to the problem complexity
with many constraints it turned out that this is not sufficient. So we
added some specialized local searches and therefore made the memetic
algorithm (MA).

We have showed, that the use of both stochastic approaches greatly
improved the quality of production plans in respect to expert’s manual
solution. Between the GA and MA was also a noticeable difference in
favor of the MA. The convergence and efficiency of the algorithm has
drastically improved with the use of specialized local searches.

For future work, we are planning to add some more constraints, like
fixed order production days (the day when order has to be carried out),
etc. Another aspect of improvement will be to make the application work
on a client-server base. This means that the optimization algorithm will
run on a host server and the results can be accessed from any local client,
which is connected to the server.
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Abstract Staff scheduling has become increasingly important for both public sec-
tor and private companies. Good rosters have many benefits for an
organization, such as lower costs, more effective utilization of resources
and fairer workloads and shifts. The construction of optimized days-
off for the personnel is an important part of the process. This paper
presents a successful way to schedule days-off for the staff of a Finnish
bus transportation company. The algorithm is a variation of the coop-
erative local search method. The generated software is currently in use
in the company.

Keywords: Metaheuristics, Real-world scheduling, Staff scheduling

1. Introduction

Many new timetabling problems and algorithms have been introduced
in recent years. Still, most of the timetabling research concentrates on
educational timetabling, staff scheduling and sports scheduling. Staff
scheduling is the process of constructing optimized work timetables for
the personnel. Different variations of the problem are NP-complete
[2, 16, 13, 17] and thus extremely hard to solve. The first mathematical
formulation of the problem based on a generalized set covering model
was proposed by Dantzig [10]. A good overview of staff scheduling can
be found in [12]. Nurse rostering [7] is by far the most studied applica-
tion area of staff scheduling. Other successful application areas include
airline crews [11], call centers [4], postal services [1] and transport com-
panies [20]. Because of its economic scale, airline crew scheduling is
probably the most celebrated application area of staff scheduling. Most
of the cases in which academic researchers have announced that they
have closed a contract with an organization concern nurse rostering (see
e.g. [3] and [6]). This paper presents a new case: scheduling days-off for
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178 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

the staff of a Finnish bus transportation company. To the best of our
knowledge, this is one of the few papers focusing on days-off scheduling.

There are basically four reasons for the current interest in staff schedul-
ing. First, public institutions and private companies around the world
have become more aware of the possibilities of decision support technolo-
gies, and they no longer want to handle the schedules manually. Second,
human resources are one of the most critical and most expensive re-
sources for these organizations. Careful planning can lead to significant
improvements in productivity. Third, good schedules are very important
for the welfare of the staff. Besides increasing employee satisfaction, ef-
fective labor scheduling can also improve customer satisfaction. Finally,
new algorithms have been developed to tackle previously intractable
problem instances, and, at the same time, computer power has increased
to such a level that researchers are able to solve real-world problems.
One further significant benefit of automating the scheduling process is a
considerable time-saving for the administrative staff involved.

The focus of this paper is to solve a constrained days-off scheduling
problem. In Section 2 we define a staff scheduling problem and intro-
duce the necessary terminology. Section 3 presents the requirements and
the requests of the days-off scheduling problem and Section 4 details a
days-off scheduling problem in one of the Finnish bus transportation
companies. Section 5 presents our solution method. In Section 6 we de-
scribe the difficulty of the process of consulting with the problem owner.
Finally, in Section 7, we propose a set of test instances that we hope the
researchers of the days-off scheduling problem will adopt. It will be seen
that our solutions to the real-world problem and for the test instances
are competitive.

2. Staff Scheduling

The staff scheduling problem has a fairly broad definition. Most of the
studies focus on assigning employees to shifts, determining working days
and rest days or constructing flexible shifts and their starting times.

Staff scheduling consists of assigning employees to tasks over a period
of time according to a given timetable. The planning horizon is the time
interval over which the employees have to be scheduled. Each employee
has qualifications and skills that enable her/him to carry out certain
tasks. A skill category determines a group of employees who have a
particular level of qualification. Days are divided into working days
(days-on) and rest days (days-off ). A sequence of working days is called
a work stretch. Working days consist of shifts. A shift is a contiguous set
of working hours and is defined by a starting period and day along with
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a shift length in periods. Each shift is composed of a number of tasks.
A specific sequence of shifts for an employee is called a stint. A work
schedule for an employee over the planning horizon is called a roster. A
roster is a combination of shifts and days-off assignments that covers a
fixed period of time.

Cyclic schedules are such that all employees have the same basic
schedule but start with a different day. In cyclic scheduling the goal
is to find a schedule that is optimal for all employees. Non-cyclic sched-
ules are individual. In non-cyclic scheduling the goal is to find rosters
that fulfill the requests of most employees. Continuous schedules arise
in organizations that operate 24 hours a day and seven days a week,
otherwise a schedule is called discontinuous.

Table 1. An example of a staff scheduling problem

M1 M2 M3 W1 W2 M4 M5

Mon Day 1 2 3
Night 3 1 2

Tue Day 1 2 3
Night 1 3 2

Wed Day 1 3 2
Night 1 3 2

Thu Day 3 1 2
Night 1 2 3

Fri Day 1 3 2
Night 1 2 3

Sat Day 1 3 2
Night 2 3 1

Sun Day 1 2 3
Night 2 3 1

Table 1 shows a solution for a one-week staff scheduling problem with
seven employees (five men and two women), two shifts in a workday (day
and night) and three tasks to be carried out within a shift. In addition,
tasks one and two can only be carried out by men, and each employee
should have one day-off.

A good classification of a staff scheduling process is given in [12].
Figure 1 shows a modified version of their presentation. The first thing
is to determine how many employees are needed at different times over
some planning horizon. Demand modeling is the process of determining
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planning horizons, the shift structure, number of employees needed at
different times, tasks to be carried out in particular shifts and the level
of qualification needed in different shifts. The output is a mathematical
model of the problem at hand.

Figure 1. A staff scheduling process.

Days-off scheduling deals with the assignment of rest days between
working days to employees over a given planning horizon. Shift schedul-
ing deals with the assignment of employees to shifts. It can also specify
the starting time and duration of shifts for a given day; that is, days-off
scheduling deals with working days and shift scheduling with the work-
ing times of day. When days-off and shifts are scheduled simultaneously,
the process is called tour scheduling. The name comes from the fact that
we need to specify the hours of the day and days of the week through
which each employee must travel. Line of work construction ensures the
feasibility of each employee’s roster. It also ensures that all the rosters
together satisfy the work requirements at all times in the planning hori-
zon. Staff assignment involves the assignment of individual employees
to the rosters. In the case of cyclic schedules, this is usually performed
manually. In the case of non-cyclic schedules, line of work construction
and staff assignment are often done during shift scheduling. We adopt
this convention in this paper. Finally, a reporting tool should display
solutions and provide performance measures in such a way that a user
can easily evaluate his or her level of satisfaction. When necessary, the
demand modeling can be reprocessed and focused, and the whole staff
scheduling process restarted. We will see an example of this in Section 6.

3. Requirements and Requests

In this section we will outline the typical constraints of a days-off
scheduling problem. The hard and soft constraints of the problem vary
somewhat depending on the problem instance at hand. However, in most
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cases the hard constraints consist of coverage, regulatory and operational
requirements and the soft constraints consist of operational and personal
preferences (see e.g. [5]). The coverage requirement ensures that there
are a sufficient number of employees on duty at all times. The regulatory
requirements ensure that the employee’s work contract and government
regulations are respected. The personnel’s requests are very important
and should be met as far as possible; this leads to greater staff satis-
faction and commitment, and reduces staff turnover. An organization
can use a mixture of the following requirements and preferences as a
framework for its days-off schedule generation:

Coverage requirement

(C1) A minimum number of employees must be guaranteed for each
shift.

Regulatory requirements

(R1) The number of working days and days-off within a timeframe must
be respected.

(R2) The number of holidays within a year must be respected.

(R3) The number of special days for particular employees within a time-
frame must be respected.

(R4) Employees cannot work consecutively for more than k days (the
maximum length of a workstretch).

(R5) Some employees cannot work at weekends.

Operational requirements

(O1) At least k working days must be assigned between two separate
days-off.

(O2) A balanced assignment of weekdays must be guaranteed between
employees.

(O3) A balanced number of surplus employees must be guaranteed for
each working day.

Operational preferences

(E1) Single days-offs should be avoided.

(E2) The maximum length of consecutive days-off is k.
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(E3) A balanced assignment of single days-off and single working days
must be guaranteed between the employees.

Personal preferences

(P1) Try to assign given employees to the same shifts and try to avoid
assigning another given employees to the same shifts.

(P2) Try to assign a requested day-on or avoid a requested day-off.

4. The Problem in a Finnish Bus Transportation
Company

In our previous studies we have successfully scheduled the Finnish
major ice hockey league [14] and the Finnish 1st division ice hockey
league [15]. When Turku Transport Services Ltd. heard that we had
scheduled these leagues, they contacted us. Turku Transport Services
Ltd. is a bus transportation company in the City of Turku. They
have currently 58 full-time, 8 part-time and 4 retired-but-still-active bus
drivers. Two part-time drivers count as one full-time driver.

Prior to the year 2010, rosters for bus drivers were produced by a
cyclic shift scheduling software which was quite out-of-date. The current
number of employees and the current way of doing business had grown
beyond the limits of the current system. The old system had led to an
oversupply of bus drivers with too much idle time. Furthermore, the
old system also required far too much manual work. For example, the
days-off scheduling was done completely manually.

Staff scheduling is quite easy in many companies because the shifts are
invariant and no work takes place on weekends. But when the amount
of work varies from day to day and from week to week, and the com-
pany runs on every day, the scheduling process can be very complex
and difficult. That is the case at Turku Transport Services Ltd. Their
scheduling problem is non-cyclic and discontinuous, and can be divided
into two separate sub-problems: days-off scheduling and shift scheduling.
We concentrate on the days-off scheduling problem.

Table 2. The minimum number of employees needed on different days of week

Mon Tue Wed Thu Fri Sat Sun

Employees 47 47 47 47 50 27 10

Suppose we have n (62) employees. Over the planning horizon of one
year (13 timeframes with a timeframe of 4 weeks totaling 364 days), we
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must find n sequences of days-on and days-off that satisfy the following
hard constraints

(C1) A minimum number of employees must be guaranteed for each
working day (see Table 2).

(R1) Each employee should have 9 days-off in every 4-week timeframe.

(R4) Employees cannot work consecutively for more than 6 days.

(R5) Six employees cannot work at weekends.

(O1) At least 2 working days must be assigned between two separate
days-off.

(O2) The number of days-off per weekday between employees should
not differ by more than 10%.

(O5) A balanced number of surplus employees must be guaranteed for
each working day.

(P1) Exactly the same sequence for three employee groups with three
employees in each group must be guaranteed.

and the following soft constraints

(E1) Single days-off should be minimized (one violation for each single
day-off).

(E2) The maximum length of consecutive days-off is three (one violation
for each day more than three).

(E3) The number of single days-off and single working days between
employees should not differ by more than 25% (one violation for
each unit of percentage over 25).

The company has more employees working than is needed to cover the
minimum number of employees each working day. The surplus employees
are used to cover the expected sick days. In addition, retired-but-still-
active drivers can be used if necessary. The average number of surplus
employees is calculated as follows. The number of man-days that is
needed over the planning horizon is given as

man needed = pm
7∑

i=1

wi,

where p is the number of timeframes, m is the number of weeks in
the timeframe and wi is the number of employees needed on weekday i



184 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

(see Table 2). Respectively, the number of man-days available over the
planning horizon is given as

man available = np(7m− d),

where n is the number of employees and d is the number of days-off that
must be respected within each timeframe (see R1). The average number
of surplus employees is now given as

avg surplus =
man available−man needed

7pm
.

In this case, man needed = 13 × 4 × 275 = 14300, man available =
62× 13× (7× 4− 9) = 15314 and avg surplus = (15314− 14300)/364 ≈
2.8. The average number of surplus employees needed on different days
of the week are calculated equally, giving values 3.33, 3.33, 3.33, 3.33,
3.55, 1.91, and 0.71. The constraint O5 can now be rephrased as “On
Mondays, Tuesdays, Wednesdays, Thursdays and Fridays either three or
four, on Saturdays either one or two, and on Sundays either zero or one
surplus employees must be guaranteed”.

The objective is to find a solution that has no hard constraint viola-
tions and that minimizes the weighted sum of the soft constraint viola-
tions. We use the adaptive penalty method for multi-objective optimiza-
tion (see Section 4). The importance of the soft constraints is handled
by giving them different constant weights. Hard constraint weights are
dynamically calculated according to the ADAGEN method. The values
of the weights, given in Table 3, were decided based on the negotiations
with the company. Note that the hard constraint C1 is not listed in the
table because the algorithm uses the exact number of employees given
in Table 2.

Table 3. The constant weights for the soft constraints and the maximum values for
the hard constraints (minimum is one)

E1 E2 E3 R1 R4 R5 O1 O2 O5 P1

1 10 5 50 50 50 20 30 50 70

We generated ten days-off schedules and selected the best one. The
schedule had no hard constraint violations and 886 single days-off. The
lengths of days-off sequences were between one and three, and the num-
ber of single days-off and single working days between employees did
not differ by more than 25%. As a result, the weighted sum of the soft
constraint violations was 886. The algorithm was run on an Intel Core 2
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Extreme QX9775 PC with a 3.2GHz processor and 4GB of random ac-
cess memory running 64bit Windows Vista Business Edition. The best
solution was found in 16 hours of computer time. The time may first
appear to be long. However, the point here is not to find a solution fast
enough and with sufficient quality. Instead, the main point here is to
find the solution of the best quality. The planning horizon is one year,
so it is worth running the algorithm overnight.

5. Solution Method

We believe that metaheuristics are best suited to solving the problem
at hand, because of the difficulty in finding even a feasible solution and
because of the number of constraints. In fact, our studies have shown
that in practical cases it is often possible to modify one’s view of what
is feasible and what is not.

The algorithm has features from many different optimization methods.
It was first introduced as a hybrid genetic algorithm with one mutation
operator and no recombination operators. Later, when the terminology
evolved, it could have been presented as a genetic local search method or
as a memetic algorithm. The algorithm uses features from tabu search,
simulated annealing, variable neighborhood search and hyper-heuristics.
Finally, the greedy hill-climbing mutation (GHCM) operator introduced
in [18] is based on similar ideas to ejection chains. We believe the best
way to describe our algorithm is to call it a cooperative local search
[8]. Here, we describe the components of the algorithm. The details are
further discussed in [19] and [14]. We believe the best way to describe
our algorithm is to call it a cooperative local search [8]. The outline of
the algorithm is given in Figure 2.

Marriage selection is used to select a schedule from the population of
schedules for a single GHCM operation. The GHCM operator moves an
object, o1, from its old position, p1, to a new position, p2, and then
moves another object, o2, from position p2 to a new position, p3, and
so on, ending up with a sequence of moves. In days-off scheduling, an
object is a day-off. A day-off can be moved between different employees.
A tabu list prevents reverse order moves in the same sequence of moves.
The simulated annealing feature uses the exponential cooling scheme.
We stop the cooling at a predefined temperature. Therefore, after a
certain number of iterations, we will continue to accept an increase in
the cost function with some constant probability, p (equal to 0.0015).
In addition, after a given number of iterations we shuffle the current
solution. We use five simple shuffling operations.
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Figure 2. The outline of the staff scheduling algorithm.
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The reproduction operation of the algorithm is based on the steady-
state reproduction to a certain extent: the new schedule replaces the
old one if it has a better or equal fitness. Furthermore, the least fit is
replaced with the best one when n better schedules have been found,
where n is the size of the population.

The ADAGEN method used is an adaptive penalty method for multi-
objective optimization. The method assigns dynamic weights to the
hard constraints instead of to the soft constraints. Finally, the current
production version of the algorithm for the presented staff scheduling
problems does not record and use the good parts of the previous solu-
tions. The parameters of the algorithm are the same as were found to
work best in [19]; that is, the population size equals 20, the maximum
move sequence in the GHCM equals 10 and the size of the tabulist is 5.

6. The Difficulty of the Process

An essential part of solving any practical problem is the process of
consulting with the various parties. We started by familiarizing our-
selves with different staff scheduling problems. We had previously solved
practical school timetabling and sports scheduling problems, but had no
clear understanding of staff scheduling. The first stage of the consulting
process was an interview with the CEO of the company. One important
thing to note is that he wanted to forget all the historical burdens to
start from scratch. After the interview we were quite pleased that the
literature we had read had given us the correct background we needed.
We were confident that we were being asked to solve a variation of the
shift scheduling problem.

We returned to the company after two months of further reading and
analyzing the given problem. This time we interviewed the transport
coordinator, who is responsible for the practical scheduling of the buses
and the bus drivers. She gave us new requirements and requests that
we were not aware of, and corrected some old ones. We were somewhat
surprised that she had a quite different vision of the future rostering
system than the CEO had. But still we were quite confident of what
we were doing, and decided to meet again within two months. Based
on this negotiation we made some final corrections and adjustments and
created the mathematical model of the given problem. We also had time
to design and code the first version of the algorithm. We then returned
to meet the CEO, the transport coordinator and her assistant to present
our current work.

What happened then was a total surprise. They were astonished that
we had not optimized the days-off. They claimed that it was the most
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important part of the scheduling process. We had thought they would
give the days-off to us, or to our algorithm as an input, and we would
then solve the monthly shift scheduling problem. But that was not the
case. We discovered that we should first solve the days-off scheduling
problem for the whole year. So, we went back home and started to
design another mathematical model for the new problem. Why we did
not understand that in first place is still a total mystery for us. But it
is worth noting that from the very beginning of the process they were
enthusiastic and not at all skeptical of us trying to beat the rosters they
had produced themselves.

It took another month before we could return to the customer. We
had done nothing to the shift scheduling problem, and had only designed
and coded an algorithm for the given days-off scheduling problem; just
to be surprised again. We were earlier told very complicated rules of how
to assign given employees to the same shifts. It had taken us a lot of
effort to model and code the given rules. In that meeting we found out
that it was not complicated at all: exactly the same sequence for three
employee groups with three employees in each group must be guaranteed
(see P1 in Section 4). Once more we went back home, simplified our
model and returned to the customer. We presented our software to the
CEO and the transport coordinator, and they were very pleased with the
results. What is the lesson learned? Researchers and customers speak
a somewhat different language; and it is the researchers’ job to learn a
new one. Customers tend to learn what they want not until they have
seen the outcome. That is why it pays off to first spend some time to
illustrate simple, easy and explicit problem instances and their possible
outcomes with customers. And even better if that could be done with
“paper and pencil”.

7. A Set of Test Instances

The generation of standard benchmark problems for staff scheduling
has received only some attention. The best test instances for employee
scheduling have been introduced in [9]. To the best of our knowledge, no
set of standard test instances has been published for days-off schedul-
ing problems. Researchers quite often only solve one real-world case.
The strength of artificial test instances is the ability to produce many
problems with many different properties. Still, they should be simple
enough for each researcher to be able to use them in their test environ-
ment. The strength of practical cases is self-explanatory. However, an
algorithm performing well on one practical problem may not perform
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satisfactorily on another practical problem. That is why we present the
first collection of artificial test instances for the days-off scheduling.

Table 4. Nineteen days-off scheduling test instances (n = the total number of em-
ployees, m = the exact number of employees needed each working day, t = the number
of timeframes, w = the length of a timeframe in weeks, d = the number of days-off in
a timeframe, smax = the maximum length of a work stretch, cmax = the maximum
length of consecutive days-off, eq = the number of identical days-off sequences be-
tween the employees, no = the number of employees who cannot work at weekends).
The solutions (sol) are the best of three runs.

# n m t w d smax cmax eq no sol

1 7 4 1 2 6 5 2 0*
2 14 9 1 2 5 5 3 1
3 14 11 1 2 3 6 2 14*
4 14 8 1 3 9 4 3 0*
5 15 10 1 3 7 5 3 0*
6 16 8 1 2 7 3 3 0*
7 28 19 1 4 9 5 3 6
8 28 20 2 2 4 5 2 32
9 42 27 2 4 10 6 4 0*

10 56 36 2 4 10 6 4 0*
11 28 14 4 4 14 4 4 0*
12 28 19 4 4 9 5 3 49
13 14 6 6 2 8 3 3 20
14 14 9 8 4 10 6 3 0*
15 32 16 8 2 7 3 3 0*
16 14 9 10 2 5 5 3 0*
17 14 9 5 2 5 5 3 3 10
18 14 9 5 2 5 5 3 2 6
19 14 9 5 2 5 5 3 3 2 15

Table 4 shows 19 test instances. The total number of employees (n)
varies between 7 and 56, and the number of total weeks (t×w) between
2 and 36. The exact number of employees (m) must be guaranteed for
each day. The maximum lengths of work stretches and consecutive days-
off are given. Their minimum lengths are two. Two instances require
a number of identical days-off sequences between the employees, and in
two instances a given number of employees cannot work at weekends.
The challenge is to find a feasible solution that minimizes the number
of single days-offs and single working days. The penalty for a single
days-off is one and the penalty for a single working day is two.

We were able to find the optimum solution (*) for eleven of the test in-
stances. For the other instances the optimum is not yet known. We hope
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these test instances will lay the foundation for the standard benchmark
instances for days-off scheduling problem.

8. Conclusions and Future Work

We scheduled days-off for the staff at a Finnish bus transportation
company. Our algorithm found a feasible and acceptable schedule for
their days-off scheduling problem. The generated days-off are currently
in use. We believe that the model and the algorithm presented in this
paper can be quite easily modified and transferred to solve other staff
scheduling problems. We also proposed a set of test instances that we
hope the researchers of the days-off scheduling problems will adopt.

We are currently solving the shift scheduling problem in the same
company. Our direction for future research will be to solve nurse roster-
ing problems occurring in major Finnish hospitals.

References

[1] J. F. Bard, C. Binici, and A. H. Desilva. Staff scheduling at the United States
Postal Service. Comput. Oper. Res., 30(5):745–771, 2003.

[2] J. J. Bartholdi III. A Guaranteed-Accuracy Round-off Algorithm for cyclic
scheduling and set covering. Oper. Res., 29(3):501–510, 1981.

[3] G. R. Beddoe, S. Petrovic, and J. Li. A hybrid metaheuristic case-based rea-
soning system for nurse rostering. J. Sched., 12(2):99–119, 2009.

[4] A. Beer, J. Gaertner, N. Musliu, W. Schafhauser, and W. Slany. Scheduling
breaks in shift plans for call centers. In Proc. 7th International Conference on
the Practice and Theory of Automated Timetabling, Montréal, Canada, 2008.
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Abstract Learning mathematics is like studying a foreign language. At first it is
hard, but eventually, it gets progressively easier. A lot of concepts in
mathematics are inter-related, so knowing one helps understand many
others. However, it has been known for a long time, through many de-
scriptive studies that have been undertaken since the 1970s, that math-
ematics has been unpopular and disliked. Namely, steps required for
learning mathematics, such as “Make sure you have at least an hour
a day to dedicate to learning mathematics. Progress through the lev-
els of mathematics. Practice with many problems.” are demanding for
many students. In this paper, we present a methodology for learning
elementary-school mathematics online. It is supported by a decision-
making system, based on evolutionary computation, which leads a stu-
dent in selecting an optimal subset of math items to effectively upgrade
the knowledge.

Keywords: e-learning, Evolutionary optimization, Web-based application

1. Introduction

The modern generation of students have grown up with technology
as a commodity for playing, social networking, obtaining many kind of
information and even for learning. Many of them act within virtual envi-
ronments and have developed virtual identities. They live in human and
technical networks that provide new opportunities for the presentation
of various experiments and knowledge. Learning within such networks is
based on concepts of aggregation, externalization, collective knowledge
creation and immersion [14].

In order to investigate the possibility of learning elementary-school
mathematics online, we developed a web-based application, called Mat-
Port (sinica.ijs.si/matport; Fig.e 1).1
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Figure 1. The MatPort system.

Although it is based on information and communication technologies,
it has a social dimension. Being part of a group and working as a collec-
tive enables students to share and discuss the mathematical knowledge.
On the other hand, online learning

is self-paced and gives students a chance to speed up or slow down
as necessary;

is self-directed, allowing students to choose content and tools ap-
propriate to their differing interests, needs, and skill levels;

is designed around a student.

It eliminates geographical barriers, opening up broader education op-
tions, and enhances other (e.g., computer) skills.

The rest of the paper is organized as follows: Section 2 describes the
content and the technology aspects of the web application. Section 3
outlines the concept of the decision-making system used to provide an
automatic search facility. The experimental work is presented in Sec-
tion 4, while conclusions and directions for future work are given in
Section 5.

2. Web-Based System

In Slovenia, there already exist web-based applications supporting
online learning of elementary school mathematics, e.g.,:
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Učiteljska.net (uciteljska.net), which is intended to support ex-
change of teacher experience and information;

e-um (www.e-um.si) that provides interactive online courses for
students.

However, there has been no system providing online courses on solving
verified mathematics problems.

2.1 MatPort Characteristics

There are two main characteristics that distinguish the web-based
application MatPort:

1 The system is based on the Slovenian curriculum for elementary
school mathematics;

2 It provides a set of verified mathematical problems for children
under 15 years of age [4].

In the pilot project, we have used a collection of verified sets of grades
6 to 9 (age group 12 to 15 years) mathematics problems published in the
form of flash cards. These problem-solving items are valuable because
they have been used for many years in the Slovenian schools, and have
already passed through many steps of evaluation. Of course, some of the
real-life items needed to be updated for the present time.

With the help of experienced teachers we classified the items into
subgroups with respect to the knowledge required for problem solving.
Items were classified by the content into three difficulty levels.

2.2 MatPort Modules

The web-based application provides modules for:

Entering math items, their solutions, and teaching instructions;

Solving math items;

Preparing the paper-and-pencil form of a test;

Providing other information relevant for teaching the elementary-
school mathematics.

While the first and the third module are aimed for teachers, the second
one is intended for students, and the last one for teachers and parents.
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2.3 MatPort Technology Aspect

The application was designed using state-of-the-art technologies. We
applied a UML (Unified Modelling Language) based model-driven metho-
dology (www.uml.org) to cover the life-cycle of the Web application
development. The MatPort’s data model was designed as a rational
database, consisting of tables that store data on user profiles, math
items, knowledge required for solving items, relations between the con-
tent areas, and history of items’ solving. In this stage we involved expe-
rienced teachers to design the application sympathetically with the way
students, teachers, and parents actually use the Web - not how we think
they should.

The application consists of the following modules:

modules for providing and solving math items;

a test-generator module;

an informer module; and

other modules, such as a forum and a download center.

The informer module has a static content that is managed by a content
management system, while the others may change their content in a
dynamic way. The application’s structure is shown in Fig. 2.

Figure 2. The MatPort’s structure.
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As the project’s budget was low and we needed to minimize the cost,
we decided to make good use of open-source and freely available software
applying:

Apache (www.apache.org) as a Web server that replies to Web
clients’ requests via HTTP (HyperText Transfer Protocol);

MySQL (www.mysql.com) as a database management system that
is based on the relational model;

PHP5 (HyperText Preprocessor) (www.php.net) as a server-side
technology;

JavaScript [3] as a client-side technology.

To support mathematical symbols, we integrated TinyMCE (tinymce.
moxiecode.com) as a platform independent JavaScript WYSIWYG ed-
itor. It has the ability to convert HTML TEXTAREA fields or other
HTML elements to editor instances. Because TinyMCE supports only
standard HTML math symbols, we extended its library with a mod-
ule for handling mathematical expressions. Once entered, these are
rendered into images using the LatexRender scripts (www.mayer.dial.
pipex.com/tex.htm). All MatPort printouts have the standard PDF
(Portable Document Format) format. The MatPort forum is based upon
the PHPBBTM (www.phpbb.com) open-source forum solution. Last but
not least, we set formatting MatPort visual options in a centralized doc-
ument that is referenced from PHP files by using CSS (Cascading Style
Sheets).

3. Decision-Making System

We are aware of the fact that only providing a dataset of math items
is not enough. We need to incorporate an extrinsic motivation system to
bribe 6th to 9th grade students to practice mathematics. There are rare
children who are intrinsically motivated to do repetitive, boring tasks.

3.1 How to Motivate Children?

A student who solves a MatPort math item receives information on
the progress through graphical symbols and stimulative words. Each
correctly solved math item, regardless of difficulty level, contributes to
the final score.

In addition, the application provides information on math items that
need to be further solved to receive a higher score. These can be supple-
mentary or additional items to help strengthen or increase knowledge,
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respectively. The information is provided by the MatPort decision sup-
port system, when the automatic search facility is used.

3.2 Evolutionary Computation

The MatPort decision-making system, aimed to motivate students to
continue solving exercises, is based upon an evolutionary computation
method, i.e., the genetic algorithm (GA) [1, 5]. The GA is based on a
heuristic method, which requires little information to search effectively
in a large search space. The algorithm employs an initial population of
chromosomes, which evolve to the next generation by probabilistic tran-
sition rules (randomized genetic operators), such as selection, crossover
and mutation. The objective function evaluates the quality (fitness) of
solutions coded as chromosomes. This information is used to perform
an effective search for better solutions. There is no need for other auxil-
iary knowledge. The GA tends to take advantage of the fittest solutions
by giving them greater weight, and by concentrating the search in the
regions of the search space with likely improvement.

The GA is a population-based evolutionary approach that allows search-
ing within a broad set of solutions from the search space simultaneously.
Namely, because there are

many math items (few hundreds or even more than thousand math
items per a grade), and

many interrelated content areas (more than 100 content areas per
a grade),

the student may continue solving items in many possible ways that may
or may not lead to a higher score. Moreover, math items are dynamically
generated by teachers (i.e., the item dataset expands with time) and
the student may start solving them anywhere in the dataset. In the
GA, there is a risk of converging to a local optimum, but good results
of various research work obtained in other optimization problem areas
[5, 8, 9, 11, 13] encouraged us to consider the GA as a promising approach
to the decision-making problem.

We developed our own version of the GA to fully adapt to the specific
problem. The details of the implemented GA, which takes into consider-
ation the directions introduced in [2, 10], are described in the subsections
below.

The main idea is to find a set of math items within different content
areas that, when solved correctly, improve the user’s knowledge and
increase his/her score as much as possible. The set of items should
consist of math problems from all poorly-scored content areas and the
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areas that precede these areas. Therefore, before starting a search, the
system identifies all feasible items, i.e., math problems from the poorly-
scored content areas. These items form some kind of a pool of relevant
items P for the current-score improvement.

Encoding The suggested list of math items needed to improve the
score is encoded into a chromosome, where each gene represents the
identification (ID) number of the item in the MatPort database. The
chromosome length has been fixed to 15, while this number represents a
reasonable number of items to perform, in order to significantly improve
the score.

Population Initialization The initial population consists of n chro-
mosomes. The initial chromosomes are set with randomly chosen items
from the pool of relevant math items. In case of identical initial chro-
mosomes some chromosomes are repaired by permutation to ensure ver-
satility.

The only requirement in this initialization stage is that no item is
repeated within each set (i.e., chromosome).

Genetic Operators The elitism approach is used - to store the best
found solution.

The substitution of the least-fit chromosomes with the equal number
of the best-ranked chromosomes ensures better solutions to have more
influence on the new generation. The ratio of all chromosomes in the
population to be replaced is set by the ratio r.

With the one-point crossover scheme, chromosome mates are chosen
randomly and with a probability pc all items after randomly chosen
position are swapped, which leads to two new solutions that replace
their original sources.

In the mutation process each item of the chromosome mutates with
a probability pm. If the item of the chromosome needs to be changed,
than some new item from the pool of relevant math items is chosen and
placed onto the mutated position of the chromosome.

There is no special repair function implemented to be used when two
identical items appear in the chromosome, either during the crossover
or mutation process. If this occurs then it leads to lower score of the
evaluation function, since not enough different items would be solved.
Consequently, such unrepaired chromosomes are removed from the pop-
ulation on the bases of evolution. Also, the items are not sorted within
the chromosome, therefore there is no need to check the position of some
item within the chromosome. The final order of the items is set at the
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end, after the GA finishes its search, and is set according to the levels
and dependencies of different items.

When enabled, the variable mutation probability pm is decreasing
linearly with each new population. Since each new population generally
fits better, we overcome a possible disruptive effect of mutation at the
late stages of the optimization, and speed up the convergence of the GA
in the final optimization stages. Moreover, the lower number of mutated
positions in the later stages presents some kind of a local search with
minor movements around current solution, i.e. fine-tuning.

Fitness Evaluation After the variation operators modify the solu-
tions, the whole new population of chromosomes is ready to be evalu-
ated. In the evaluation process the set of math items is assumed to be
solved correctly and the score improvement is calculated. The calculated
score improvement is used as a fitness value of each chromosome. Here
all the items are weighted with respect to

difficulty levels,

content areas, and

relations between content areas

to increase the diversity; the order of items is relevant when the problems
belong to different content areas that derive from each other.

Parameter Settings In order to ensure optimal solutions in a reason-
able response time robust parameter settings need to be found for the
population size, number of generations, selection criteria and genetic
operator probabilities:

If the population size and the number of generations are too small,
the GA converges too quickly to a local optimal solution and may
not find the best solution. On the other hand, a large population
and too much iteration require long time to converge to a region
of the search space with significant improvement. In our case, we
have used the population size n = 15 and number of generations
ng = 30;

With applying the elitism strategy, fitter solutions have greater
chance to be reproduced. But when the number of worse solutions
to be exchanged with better ones (the selection criteria) is too
high, the GA is trapped too quickly in a local optimum solution.
Our replacement rate r has been 20%;
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Too low crossover probability preserves solutions to be interchanged
and longer time is required to converge. This probability should
be large enough to crossover almost all mated solutions. In our
case, efficient setting for pc has been 70%;

Too high mutation probability may introduce too much diversity
and takes longer time to reach an optimal solution. Too low muta-
tion probability tends to miss some near-optimal solutions. Again,
the efficient setting for pm has been 5%.

When variable mutation was enabled the pm decreased linearly to
1%, from the first till the last generation.

Termination After a certain number of populations are generated
and evaluated, the system is assumed to be in a non-converging state.
A chromosome with the highest score improvement is chosen as a final
result.

On average, the GA finds an optimal selection of math items within all
the content areas that need to be further solved by the user to receive a
higher score (i.e., obtain a sufficient knowledge) in order of few seconds.
As it is implemented as a background process, it does not slow down the
application.

4. Experimental Work

We ran the GA to collect sufficient amount of results, which were then
subjectively judged by three experienced teachers. They estimated the
decision-making system as a reliable tool:

1 Math items were selected from content areas that really needed to
be further investigated;

2 Content areas were ordered in a meaningful way;

3 Selected math items could improve the student’s knowledge;

4 The results were generated in real-time, in order of seconds.

However, we still need to prove this by using statistics. We should
involve a group of students and their teachers, and statistically evaluate
the effectiveness of the MatPort system in different aspects, measuring
the success in terms of knowledge and joy of learning.

5. Conclusions

The main aim of the methodology presented in this paper is to pro-
vide a modern tool that would support education, which is more than
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acquiring information and knowledge, but is also about whether and how
these are memorized and used.

First, the instructional design of the MatPort Web application, which
is aimed for elementary mathematics online learning in the active way,
was presented. We upgraded this design by incorporating a high-perfor-
mance evolutionary computation method to support automatic search of
relevant math items. In this way, the MatPort may lead its users toward
higher scores in a thoughtful way. The main reason for selecting a heuris-
tic method has been that we wished to provide a non-deterministic be-
havior of the decision-making system to overcome the problem of cheat-
ing. Finally, we described the method for evaluation of the application’s
effectiveness.

After the pilot stage of the project, we are planning to expand the
dataset of math items to other elementary school grades. We will in-
crease its efficiency through additional motivation tools, such as winner
lists or computer games, which will be activated as soon as a student
will gain a certain score.

Much work needs to be done to find an adequate level of human
intervention. In cooperation with teachers, we will try to improve the
way of providing teaching instructions and intermediate solutions. Last
but not least, we will discuss the problem of cheating.

In addition, we will do some experimental work on the application of
the efficient parameter-less evolutionary search method [12] as a substi-
tution for the currently implemented genetic algorithm.

Notes

1. It has been known for a long time, through many descriptive studies that have been
undertaken since the 1970s, that mathematics has been unpopular and disliked [7].
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Faculty of Electrical Engineering and Computer Science

University of Maribor, Slovenia

{ales.zamuda; janez.brest; borko.boskovic; viljem.zumer}@uni-mb.si

Abstract This paper presents an approach for recognition of procedural three-
dimensional models of woody plants (trees). The used procedural tree
model operates by building a three-dimensional structure of a tree by
applying a fixed procedure on a given set of numerically-coded input
parameters. The parameterized procedural model can later be used
for computer animation. Recognition of a parameterized procedural
model, from the photographic images, is done by differential evolution
algorithm which evolves this model by fitting a set of its rendered images
to a set of given photographic images. The comparison is done on a pixel
level of the images through the integration of distances to the nearest
similar pixels. The obtained results show that the presented approach is
viable for modeling of woody plants for computer animation by evolution
of the numerically-coded procedural model.

Keywords: Differential evolution, Numerical encoding, Procedural model, Self-adap-
tation, Structure recognition, Woody plant

1. Introduction

In this paper we present a new approach to design three-dimensional
geometrical models for woody plants (trees). The geometrical models
are expressed indirectly with the use of procedural models to reduce
the enormous data storage space needed for their representation. The
procedural models can also be easily animated and are suitable in com-
puter graphics and animation. Our new approach to design of woody
plant models is based on recognition of their procedural models [21],
from images using evolutionary algorithms [22]. The paper [2] presents
an approach for recognition of procedural models. However, the pro-
cedural models obtained in [2] were not as complex to express woody
plants. Also the recognized procedural models were two-dimensional.
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Therefore, we extend this approach to the domain of three-dimensional
procedural models suitable to model woody plants.

In the next section, the related work is presented. In the Section 3,
the proposed approach for procedural models recognition using differen-
tial evolution is described. In the Section 4, experimental results and
their discussion is given, which show that the given approach is suitable
for design of woody plant models. The Section 5 concludes with final
remarks and propositions for future work.

2. Related Work

In this section, we present the differential evolution algorithm and
one of its improvements, the jDE algorithm [4, 6]. Then, we list some of
the procedural models for modeling of trees and outline the numerically-
coded procedural model of the EcoMod framework [21, 23, 25].

2.1 Differential Evolution

Differential Evolution (DE) [18] is a floating-point encoding evolu-
tionary algorithm for global optimization over continuous spaces, which
can also work with discrete variables. Its main performance advantages
over other evolutionary algorithms [4, 11] lie in floating-point encoding
and a good combination of evolutionary operators, the mutation step
size adaptation and elitistic selection. The DE algorithm has a main
evolution loop in which a population of vectors is computed for each
generation of the evolution loop. During one generation G, for each vec-
tor xi, ∀i ∈ {0, NP} in the current population, DE employs evolutionary
operators, namely mutation, crossover, and selection, to produce a trial
vector (offspring) and to select one of the vectors with best fitness value.
NP denotes population size and G the current generation step.

Mutation creates a mutant vector vi,G+1 for each corresponding pop-
ulation vector. One of the most popular DE mutation strategies is
’rand/1/bin’ [14, 18]:

vi,G+1 = xr1,G + F (xr2,G − xr3,G),

where the indexes r1, r2, and r3 represent the random and mutually
different integers generated within the range {1,NP} and also different
from index i. F is an amplification factor of the difference vector within
the range [0, 2], but usually less than 1. Vector at index r1 is a base
vector. The term xr2,G − xr3,G denotes a difference vector which after
multiplication with F , is named amplified difference vector.

After mutation the mutant vector vi,G+1 is taken into recombination
process with the target vector xi,G to create a trial vector ui,j,G+1. The
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binary crossover operates as follows:

ui,j,G+1 =

{
vi,j,G+1 if rand(0, 1) ≤ CR or j = jrand

xi,j,G otherwise
,

where j ∈ {1, D} denotes the j-th search parameter of D-dimensional
search space, rand(0, 1) ∈ [0, 1] denotes a uniformly distributed ran-
dom number, and jrand denotes a uniform randomly chosen index of the
search parameter, which is always exchanged to prevent cloning of target
vectors. CR denotes the crossover rate.

Finally, the selection operator chooses one of the vectors with a better
fitness value (for minimization problem):

xi,G+1 =

{
ui,G+1 if f(ui,G+1) < f(xi,G)

xi,G otherwise
.

DE was proposed by Storn and Price [18] and since then, it has been
modified and extended several times with new versions proposed [14, 9].
We have used the jDE algorithm [4], which adds to the original DE, a self-
adaptation mechanism of F and CR control parameters. In this work,
only the original jDE algorithm [4] was used, although the algorithm
also has some extensions that have not been used in this work [5, 6, 7].

2.2 Woody Plants Procedural Models

The procedural modeling of trees has a thirty year tradition in com-
puter graphics. Manual editing of a tree structure and its leaves is a
tedious task, since each branch and leaf position, rotation, size, and
texture must be appointed. Therefore, procedural tree models are used
instead, and several techniques for procedural models are available to-
day. Different procedural models are based on various types of branching
structure construction [15]. These techniques differ in the level of de-
tail [1, 3, 16], the flexibility, and pretentiousness of modeling [10, 19],
space [13], and time complexity [13] in addition to the animation ability
and representation of the built three-dimensional model. The major-
ity of these models try to determine some visible properties of the final
three-dimensional model, such as the rotation of branches around their
central axes. These properties are usually biologically inspired by phyl-
lotaxis, i.e. the main influence on the tree’s architecture [17].

Holton [10] created trees with the use of biologically inspired strand
model. An upside of this model is that, thickness of branches and pro-
portions between branching angles are determined directly with internal
rules in the model. Strands flow along branches and are divided with-
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out splitting a single strand. Branches with single strands are carry-
ing leaves. Strand distribution determines branch thickness and their
lengths. User enters the number of strands along the tree, proportions
between branch lengths and branching angles to parametrize the proce-
dural model. Certain attractors influence the branching structure, e.g.
central trunk uprightness, gravimorphism, phototropism, planartropism,
and phyllotaxis. A downside of the model is that user still has to enter
a huge amount of numerical data, which diminishes the flexibility of the
model.

Weber and Penn [19] represented the tree model with the use of simple
geometry without a development of branching topology. For all branches
at the same levels, they entered branching angle, branch length propor-
tions and thickness for branches. They presented wind sway animation,
branch cutting to predetermined volume, and progressive level of detail
rendering.

The EcoMod framework incorporates a procedural model for woody
plants, based on the Holton and Webber-Penn models. The procedural
model and its modeler with woody plant models library was first in-
troduced in [25] and is in greater detail described in [21, 23, 24]. The
procedural model also helps to design the tree from a minimized set
of parameters that the user must set by automatically determined posi-
tions, rotations, sizes and textures for several thousand branch segments
and several thousand leaves. An individual tree species model is created
by parametrizing the procedural model. It generates a three-dimensional
structure [20] of a tree by recursively executing a fixed procedure over a
given set of numerically coded input parameters, such as branch thick-
ness, relative branch length and branching structure proportions. Each
step of the procedure adds a building block of a tree to the geometrical
model. The trees designed with this model can be foliage or coniferous
trees with very different branching structures. Each branch and each
leaf can be animated in real time to show the growth of a tree or its
sway in the wind. By slightly modifying the parameters of procedural
models, we can achieve computer animation of these models [24], thereby
creating several geometrical models from a single procedural model.

Parameters of EcoMod woody plant procedural model are distin-
guished as vectors (local) and scalars (global). Global parameters are
constant for all branch segments although local parameters vary along
Gravelius (g) and Weibull (w) branch order. Vector parameters design
the strand distribution, branching angles, branch segment proportions,
and gravity impact to tree geometry. Scalar parameters of the model are
height and thickness of base trunk, wind impact, and density and size of
leaves. Using listed vector and scalar parameters, geometrical model is
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Algorithm 1 Calculation of geometrical structure of the procedural
model tree. Recursive procedure is called using branchsegment(0, 0,

S, 1, l0,00 , I, I, I), I denoting an identity matrix.

1: procedure branchsegment(g, w, S0, L0, l0, M0, M
−1
m;0, M

−1
w;0)

Require: g, w - Gravelius and Weibull index of base branch; S0 - number of strands
in base branch; L0, l0 - base branch relative and actual length; M0 - base branch
coordinate system; M−1

m;0 - inverse matrix of rotations for gravimorphism in co-

ordinate system for base branch; M−1
w;0 - inverse matrix of rotations for directed

wind in coordinate system for base branch; global kd, kc, ltype, k
g,w
s , Mg,w, mg,w,

kg,w

l , αg,w
m , αg,w, t, kf , ws, wg

Ensure: rendered tree image
2: d := kd

√
S0; {thickness calculation from Mandelbrot}

3: render base branch(M0, l0, d);
4: if S0 = 1 then

5: render leaves(ltype); return;
6: end if

7: S1 := ⌈1 + kg,w
s (S0 − 2)⌉, S2 = S0 −S1; {number of strands in major and minor

subbranches}
8: r1 := max

{

min
{√

S1
S0

,Mg,w
}

,mg,w
}

{branch length proportions dependant on

strands}
9: r2 := max

{

min
{√

S2
S0

,Mg,w
}

,mg,w
}

;

10: L1 := r1L0, L2 := r2L0; {relative length of subbranches}
11: l1 := kg,w

l L1, l2 := kg,w

l L2; {active subbranch length}
12: α1 := kc

√

S2
S0

αg,w, α2 := αg,w − α1; {branching angles}
13: αx(t) := sin(t+Rx)ws(1− kf )l0; {animation of un-directed wind impact}
14: αz(t) := sin(t+Rz)ws(1− kf )l0;
15: αw := S0

S
wg; {animation of directed wind impact}

16: M1 := Rw0(αw)Rz(α1 + αz(t))Rx(αx(t))Ry(αp)Ry×ym(αg,w
m )Ty(l0)M0;

17: M2 := Rw0(αw)Rz(α2 + αz(t))Rx(αx(t))Ry(αp)Ry×ym(αg,w
m )Ty(l0)M0;

18: M−1
m;1 := Ry×ym(−αg,w

m )Ry(−αp)Rx(−αx(t))Rz(−α1−αz(t))M
−1
m;0; {refreshing

inverse matrix for construction of gravimorphism vector, without considering
wind impact}

19: M−1
m;2 := Ry×ym(−αg,w

m )Ry(−αp)Rx(−αx(t))Rz(−α2 − αz(t))M
−1
m;0;

20: M−1
w;1 := Ry×ym(−αg,w

m )Ry(−αp)Rx(−αx(t))Rz(−α1 − αz(t))Rw0(−αw)M
−1
w;0;

{refreshing inverse matrix for construction of directed wind vector}
21: M−1

w;2 := Ry×ym(−αg,w
m )Ry(−αp)Rx(−αx(t))Rz(−α2 − αz(t))Rw0(−αw)M

−1
w;0;

22: branchsegment(g+1, w+1, S2, L2, l2, M2, M
−1
m;2, M

−1
w;2); {minor branch devel-

opment}
23: branchsegment(g, w + 1, S1, L1, l1, M1, M

−1
m;1, M

−1
w;1); {major branch develop-

ment}
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built recursively. From a procedural model for a tree, a geometry model
is calculated using the briefly denoted Algorithm 1. Geometrical model
is rendered using photo textures for final look of a tree. This model
differs from many other models [1, 3, 10, 12, 16] since all of its param-
eters are fully numerically encoded and are fixed dimensionality. It is
therefore especially suitable for parameter estimation using differential
evolution.

2.3 Image-based Approaches to Modeling

Image-based approaches have the best potential to produce realisti-
cally looking plants, since they rely on images of real plants [8]. Also,
little work has been done to design trees with the use of a general recog-
nition from images without user interaction. In [2] an approach for
recognition of procedural models is presented. However, the procedural
models used in [2] were two-dimensional. Therefore, we extended their
approach to the domain of three-dimensional procedural models suitable
to model woody plants without user interaction.

3. Woody Plants Recognition by Differential
Evolution

We have combined the jDE algorithm [4] and the numerically coded
procedural model of woody plants from EcoMod framework [21, 23, 25].
Thereby, we recognize woody plant models from images by evolving the
parameters of the procedural model. The fitness computation is based
on the comparison of two-dimensionally rendered images. The fitness
is better (i.e. takes smaller values) for images with greater similarity.
The recognition method operates by encoding the parameters of the
procedural model in genotype of the individual vector of jDE population.
In the following, parts of the optimization procedure are described, i.e.
the genotype encoding, genotype-phenotype mapping, and its fitness
evaluation.

3.1 Genotype Encoding

An individual genotype vector x of jDE population represents the set
of procedural model parameters, used in Algorithm 1. The dimension-
ality of evolved floating-point encoded parameters is D = 4509. Each
parameter xi,j ∈ [0, 1] for all i ∈ {1..NP} and j ∈ {1..D} encodes the
following parameters (for more explicit formulation of the parameters
see [21]):
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number of strands of a tree
S = 400xi,0 + 10 (S ∈ [10, 410]),

height of base trunk
l0,00 = xi,110 m (l0,00 ∈ [0 m, 10 m]),

coefficient of branch thickness
kd = 0.05xi,2 (kd ∈ [0, 0.05]),

phyllotaxis angle
αp = 360◦xi,3 (αp ∈ [0◦, 360◦]),

branching ratio of subbranch strands distribution
kg,ws = 0.5xi,j + 0.5, ∀j ∈ {4, 753} (kg,ws ∈ [0.5, 1]),

branching angle between dividing subbranches
αg,w = 180◦xi,j , ∀j ∈ {754, 1503} (αg,w ∈ [0◦, 180◦]),

maximum relative subbranch to base branch length
Mg,w = 20xi,j , ∀j ∈ {1504, 2253} (Mg,w ∈ [0, 20]),

minimum relative subbranch to base branch length
mg,w = 20xi,j , ∀j ∈ {2254, 3003} (mg,w ∈ [0, 20]),

branch length scaling factor
kg,wl = 20xi,j , ∀j ∈ {3004, 3753} (kg,wl ∈ [0, 20]),

gravicentralism impact
kc = xi,3754 (kc ∈ [0, 1]),

gravimorphism impact (i.e. gravitational bending of branches)
αg,wm = 360◦xi,j − 180◦, ∀j ∈ {3755, 4504} (αg,wm ∈ [−180◦, 180◦]),

enabling leaves display on a tree
Bl = ⌊xi,4505 + 0.5⌋ (Bl ∈ {0, 1}),
density of leaves
ρl = 30xi,4507 (ρl ∈ {0, 30}),
size of leaves
ll = 0.3xi,4506 (ll ∈ [0, 0.3]), and

leaf distribution type
ltype = 5xi,4508 (ltype ∈ {Spiral, Stacked, Staggered, Bunched,
Coniferous}),

where g ∈ {0, 15}, w ∈ {0, 50}, and each 750 real-coded parameters
encode one matrix of a Gravelius and Weibull ordered parameter.
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3.2 Genotype-phenotype Mapping

Our recognition method is based on recognition of two-dimensional
images of woody plants z∗, possibly taken by a digital camera. To com-
pare the three-dimensional tree evolved with the use of genotype x to
the reference image z∗, the encoded D-dimensional genotype x must
be transformed to its phenotype first. Phenotype is a rendered two-
dimensional image z of a genotype x with the use of Algorithm 1. Im-
ages z∗ and z are all of dimensionality X×Y pixels, where the reference
image is scaled to the given resolution, if necessary. Both images are
converted to black and white, where white (0) pixels mark background
and black (1) pixels mark the material, e.g. wood. With the use of the
conversion, the evolved procedural model is compared twice to the refer-
ence images, differing by camera view angle of β = 90◦ along the trunk
base. The latter is done to favor three-dimensional procedural models
generation. If we denote the Algorithm 1 as function g then z = g(x, β).

3.3 Phenotype and Reference Image Comparison

The recognition success is measured by similarity of the reference
original images and the generated rendered images of evolved paramet-
rized procedural models. To measure similarity of these images we chose
to compare the images pixel-wise as follows. For each pixel rendered
as non-background in the evolved image, we compute the Manhattan
distance to the nearest non-background pixel in the reference image, and
vice-versa [2]. The sum of these distances accounts for fitness evaluation
of each phenotype:

f(x) = f(g(x, 0◦),g(x, 90◦)) = h(z1) + h(z2),

h(z) =
∑

x,y

m1(zx,y, z
∗
x,y) +

∑

x,y

m1(z
∗
x,y, zx,y),

where m1 denotes a function which computes a Manhattan distance to
the nearest pixel in an image z∗, being set to 1 (i.e. black, wood material).

4. Experimental Results

We have assessed the algorithm for tree recognition on an example
tree, seen in Fig. 1 on the far right. The sampling rate dimension of
the rendered parametrized procedural model was set to 250x250, the
maximal number of strands in the tree to S = 410, and the maximal
number of fitness evaluations (FEs) for jDE algorithm to FEs = 10000.
The remaining parameters were kept as defaults in original algorithms
from their literature.
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Figure 1. Rendered evolved parameterized procedural models at FEs ={1, 8, 18,
1992, 2727, 3230} (NP = 100, seed 1) and fifth, the reference image.

Final best evaluations obtained over 30 runs for different settings of
NP in the evolutionary algorithm are seen in Fig. 2. The best average
final best was obtained using NP = 100 with fitness of 1828.3. For
population size of NP = 100, the jDE algorithm in 30 runs obtained
the best fitness value of 1806, the worst being 1870, and the average of
1828.3 with standard deviation of 84.4. The sampled procedural models
for run 1, with seed 1, for this test are seen in Fig. 1. The tree on
the image is 2.5 m tall, 1 m for the first branch segment, therefore it
only extends to a part of the image’s canvas which is 25 m tall in total.
Therefore, the images in Fig. 1 were zoomed to fit. Since we can design
woody plants with a reliability, seen in Fig. 2 and obtain such models as
seen in Fig. 1, we can conclude that the presented approach is viable for
modeling of woody plants for computer animation by evolution of the
numerically-coded procedural model.

5. Conclusions

We presented an approach to design woody plant geometrical models.
To construct a geometrical model, we have used a parameterized pro-
cedural model. The parameters of the procedural model were evolved
through the jDE differential evolution algorithm. The sampled proce-
dural models were rendered with the use of the EcoMod framework.
Rendered images were then compared to the reference source images,
for recognition, to guide the optimization process. After the descrip-
tion of proposed approach, we demonstrated its experimental results by
recognition of a sample woody plant model and statistical analysis of
the obtained results.

In the future research, we would like to improve metrics for compar-
ison of rendered and reference images. Multiple metrics could be used
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Figure 2. Algorithm performance, dependent on population size.

and combined with the use of multi-objective search [22], and possibly
combined with interactive methods for optimization.
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Abstract This paper adopts four stochastic optimization algorithms to perform
model selection in linear regression models when the number of can-
didate variables is such that full enumeration of all possible models is
impossible. Algorithms performance in maximizing several fitness func-
tions are compared using different measures. The main conclusion is
that performance differentials depend on the problem complexity, in
terms of the number of local solutions, and on the measure used. In
absolute terms, however, Genetic Algorithms and Simulated Annealing
give the best results.
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1. Introduction

Variable selection is one of the core steps before fitting any econo-
metric model, especially when dealing with multivariate ones. Given its
central role, many different methodologies have been proposed.

The first ones being developed have been sequential and iterated pro-
cedures. Forward Selection and Backward Elimination [3] rely on se-
quential hypothesis testing of the coefficients significance. Lasso [19] and
garrote [9], are shrinkage based techniques that contemporaneously esti-
mate coefficients and select variables, by applying progressively stronger
constraints on the estimates. Finally, the two most used bayesian algo-
rithms in this framework are Stochastic Search Variable Selection (SSVS)
[4] and Markov Chain Monte Carlo Model Comparison (MC3) [13]. Fi-
nally, Principal Variables [12] and Diffusion Indexes [18], popular in a
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forecasting framework, select variables by using data dimensionality re-
duction techniques such as principal components and factor analysis.

Despite such abundance and variety of approaches, as the number of
candidate variables increases some of those procedures become infeasible.
This is due to the well known dimensionality curse.

A possible remedy might come from Stochastic Optimization Algo-
rithms (SOA). A natural way to link them to the variable selection
problem is in couple with Information Criteria.

Despite their great potential, not much is known about their real
performance in solving the variable selection problem in an econometric
framework. On the contrary, in data mining this problem is known as
feature selection and extensive research use SOA [7]. The aim of this
paper is to fill this gap by investigating how those algorithms work, both
in absolute and in relative terms.

The paper proceeds as follows. Section 2 briefly describes SOA and
their implementation, Section 3 introduces the adopted methodology
and illustrates the results, Section 4 concludes and proposes future im-
provements.

2. Theory

In presenting the algorithms, we follow the taxonomy in [20], whose
first distinction is between local and global search algorithms. The clas-
sification is based on the way the algorithms organize their walks through
the solutions space.

2.1 Local Search algorithms

The two local search algorithms adopted are Random Search and Mul-
tiple Random Search. As typically implemented, Random Search entails
the following steps:

Algorithm 1 Random Search

1: Generate initial solution mc. Calculate f(mc).
2: while stopping criteria not met do
3: Generate mn ∈ Υ(mc)
4: if f(mn) < f(mc) then
5: mc = mn

6: end if
7: end while

In case there are no local solutions this algorithm is expected to per-
form as well as global search ones with fewer iterations. It stops when
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there is no mn in the neighborhood of mc that represents a better so-
lution. Similarly, the Multiple Random Search algorithm might be for-
malized in the following way:

Algorithm 2 Multiple Random Search

1: Initialize Ψ
2: for ψ = 1 to Ψ do
3: Generate initial solution mc

ψ

4: while stopping criteria not met do
5: Generate mn

ψ ∈ Υ(mc
ψ)

6: if f(mn
Ψ) < f(mc

ψ) then
7: mc

ψ = mn
ψ

8: end if
9: end while

10: store m∗
ψ

11: end for
12: Select M∗

ψ s.t. Φ = [m∗
ψ|m∗

ψ > M∗
ψ] = ⊘

In the case of the variable selection problem, a solutionm represents a
model, a 1×k row vector of zeros and ones [ 1 0 . . . 0 1k ] where a
1 in the jth position indicates that the jth variable belongs to the subset
of variables used to compute the objective function f(◦). M∗

ψ represents
the final solution that the algorithm returns. In the following analysis,
as in [4], the starting solution mc is randomly generated according to

the following density p(mc) =
k∏
j=1

π
mc

j

j (1 − πj)
mc

j where π = 0.5. A

neighborhood of a current solution, Υ(mc), is the set of all 1× k vectors
with at least one and at most κ < k elements different from mc. For
the empirical analysis κ has been set equal 1. Given a standard linear
regression framework where y is the vector of the dependent variable,
X the regressors matrix, β̂ = (X ′X)−1X ′y the ordinary least square

estimates, ŷ = Xβ̂ the fitted values, ê the vector of residuals, and the
log-likelihood λ̂ = −T

2 (1+ ln(2π)+ ln( ê
′ê
T
)), the fitness functions f(◦) to

be maximized are:

1 Akaike Information Criterion (AIC): λ̂− k

2 Bayesian Information Criterion (BIC): λ̂− ln(T )k
2

3 Adjusted R2: 1−
ê′ê

T−k−1
(y−y)′(y−y)

T−1
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4 Mean Square Error: −[ 1
T

T∑
t=1

(yt − ŷt)
2]

5 Sign Criterion: 1
T

T∑
t=1

{
Iyt>0Iŷt>0 + (1− Iyt>0))(1− Iŷt>0)

}

Those functions have been chosen because they are most frequently
used for in-sample and out-of-sample model validation and because they
entail different degrees of nonlinearity.

2.2 Global Search algorithms

2.2.1 Genetic Algorithms. Genetic Algorithms (GAs) by [10]
and [5] are a subfamily of a wider random-guided search techniques called
evolutionary algorithms [16]. As typically implemented, GAs involve the
following steps:

Algorithm 3 Genetic Algorithm

1: Generate initial population P , initialize pmut and pcross
2: while stopping criteria not met do
3: Select P ′ ⊂ P (mating pool) set P ′′ = ⊘ (set of child)
4: for i = 1 to n (population size) do
5: Select individuals ma and mb at random from P ′

6: if u(0, 1) < pcross then
7: cross-over and to produce mc

8: end if
9: if u(0, 1) < pmut then

10: mutate produced child mc

11: end if
12: P ′′ = P ′′ ∪mc

13: end for
14: P = P ′′

15: end while

P and P ′′ are n × k matrices, where each row is a binary vector
representing a solution. Similarly, P ′ is a submatrix of P whose row
size depends on the parameters discussed below. When the solutions
are taken individually as 1 × k vectors, they are labeled with m. GA
parameters are often chosen according to some general guidelines pre-
sented in literature and by calibrating, mainly by means of Monte Carlo
simulations, the algorithm to the problem [1]. Following [2] the value
for pcross and pmut have been set to 0.7 and 0.1 and as suggested by
[16], they decrease over time. Uniform crossover and flipping mutation
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are adopted. To improve the algorithm performance, elitism operator is
used by setting the row size of P ′ 0.5 times the one of P ; it implies that
only the better half of the current population is used to breed the next
generation. Finally, the stopping criterion is determined by a maximum
number of generations to be performed, and is a decreasing function
of the population size. The row size of P is around 2k where k is the
number of regressors, and number of generation has been set to 50, with
those value increasing according to problem difficulty.

2.2.2 Simulated Annealing. It is based on ideas from statisti-
cal mechanics and motivated by an analogy to the behavior of physical
systems in the presence of a heat bath [11]. This approach avoids en-
trapment in poor local optima by allowing an occasional uphill move.
It is done under the influence of a random number x ∼ u(0, 1) and a
control parameter T , called the temperature, that affect the probability

of uphill move e−
∆
T . As typically implemented, the simulated annealing

approach involves the following steps:

Algorithm 4 Simulated Annealing

1: Generate a current solution mc, initialize L, r < 1 and T
2: for l = 1 to L do
3: while stopping criteria not me do
4: Select a new candidate solution mn ∈ Υ(mc)
5: Compute ∆ = f(mn)− f(mc)
6: if ∆ ≤ 0 then
7: mc = mn

8: else
9: if u(0, 1) < e−

∆
T then

10: mc = mn

11: end if
12: end if
13: end while
14: Set T = rT
15: end for

While r = 0.005 and L = 20 have been found to fit for most of
functions to be maximized, initial T has been found strongly depending
on the function characteristics, in particular on its scale. It must be
carefully chosen because if it is too high, the algorithm converges too
late. If it is too low, it does not explore a sufficiently broad area of
the solution space, in both cases it returns a local solution far from the
global one.
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3. Results

As common practice in this kind of studies [14], two analysis are
performed: with real and randomly generated data.

3.1 Monte Carlo Simulations

3.1.1 Absolute performance evaluation. The following sim-
ulations are aimed to investigate how three factors affect algorithms’
performances. They are N , the number of candidate variables, t, the
number of observations, and Σ the variance covariance matrix of the
regressors. The two values that t can assume are aimed to mimic a
small and a large sample, while the values of Σ are aimed to simulate
a situation of no and one of medium multicollinearity (i.e. the degree
of pairwise correlation between variables). Some more details are re-
quired for N . In order to evaluate the algorithms in absolute terms, the
global solution must be known. This requires tabulating the empirical
cumulated distribution function, Φ(◦), of all the possible 2N models and
Φ−1(1), its maximum. If N is too high, the analysis becomes infeasible,
due to the excessive computational burden. If it is too low, it becomes
useless since there would be no real need to use SOA. Therefore the two
values that N can assume, 14 and 17, have been chosen in such a way
to balance this trade-off between feasibility and significance.

A setting is defined by a vector Θ = [Ni∈1,2, tj∈1,2,
∑

l∈1,2], where

N ∈ [14, 17], t ∈ [35, 150] and
∑ ∈ [Ik,M ]; I is the identity matrix

whileM is such that it induces a pairwise correlation among variables of
about 0.5. Given those six values, a total of eight settings are simulated,
from Θ = [14, 35, Ik] to Θ = [17, 150,M ]. For each setting, the full
regressors matrix is generated such that Xtj×Ni

∼ N(µ,Σl), from it the
dependent variable is constructed according to yt = Xtj×n<Ni

β + εt,

finally all f(mi) for i = 1 to 2Ni with mi ⊆ MNi
are computed. Once

the full empirical distribution of the values assumed by the function
is obtained, the algorithms are run 50 times and summary statistics

µa =
1
50

50∑
i=1

c(f(ma,i)) are computed, where a is the subscript to identify

the algorithm and c are criteria described below.
In order to judge the algorithms performance, eight criteria have been

designed, with the intent of catching different aspects.

1 Fitness: It is the value of the maximized function f(m∗
a), where

m∗
a is the model found by the ath algorithm.

2 Rank: It is the rank of f(m∗
a) out of all the possible 2Ni .
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3 Percentile: It is the percentile Φ(f(m∗
a)) of f(m∗

a) where Φ(◦)
represents the empirical cumulative distribution function.

4 Best: It is an indicator variable that takes value 1 if f(m∗
a) =

f(M∗), where M∗ is the model at which the function reaches the
global max: Φ−1(1).

5 Percentile 99.5: It is an indicator variable that takes value 1 if
99.5 ≤ Φ(f(m∗

a)).

6 Distance: ∆ = f(M∗)− f(m∗
a) where M

∗ is the model at which
the function reaches the global max: Φ−1(1).

7 Efficiency: νa
2N

where νa is the number of times the cost function

is evaluated by the ath algorithm and 2N represents the maximum
number of model combinations given N variables.

8 Time: It is the time needed to perform νa.

The following results are based on the maximization of AIC and BIC
criteria as defined in Section 2.

Table 1. BIC: Rank

N Sigma t RandomSearch MRandomSearch GA SA

14 I 35 3.9 1 1 1
14 I 150 4.8 1.1 1 1
14 M 35 4.3 1 1 1.1
14 M 150 6 1.3 1 1
17 I 35 4.6 2 1.1 1.9
17 I 150 34.8 2.2 1.6 1.7
17 M 35 30.6 2.1 1 1
17 M 150 28.4 1.9 1.1 1.3

Mean 14.68 1.58 1.10 1.25

Tables 1 and 2 display the average rank for each setting. Genetic algo-
rithms, Simulated Annealing and Multiple Random Search outperform
a simple Random Search whose average rank, across all experiments, is
around 13. In particular, Genetic Algorithms are always able to find the
global solution when there are 14 variables and 214 = 16,384 possible
solutions.

Tables 3 and 4 display the success rate, i.e. the percentage of times
the algorithm converges to the global solution. It is calculated as the
mean of Criterion 4 illustrated before. From this point of view, Genetic
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Table 2. AIC: Rank

N Sigma t RandomSearch MRandomSearch GA SA

14 I 35 3 1 1 1.2
14 I 150 4.7 1.2 1.2 1
14 M 35 7.2 1.1 1 1.3
14 M 150 5 1.3 1 1
17 I 35 23.6 1.9 1 1.6
17 I 150 25.2 3.9 1.6 1.7
17 M 35 17.2 1.5 1.2 1.3
17 M 150 21 1.9 1.1 1.4

Mean 13.36 1.73 1.14 1.31

Table 3. BIC: Success rate

N Sigma t RandomSearch MRandomSearch GA SA

14 I 35 0.6 1 1 1
14 I 150 0.3 0.9 1 1
14 M 35 0.3 1 1 0.9
14 M 150 0 0.8 1 1
17 I 35 0.2 0.3 0.9 0.6
17 I 150 0 0.4 0.6 0.2
17 M 35 0 0.2 1 1
17 M 150 0 0.7 0.9 0.7

Mean 0.15 0.66 0.93 0.80

Table 4. AIC: Success rate

N Sigma t RandomSearch MRandomSearch GA SA

14 I 35 0.6 1 1 0.8
14 I 150 0.3 0.8 0.8 1
14 M 35 0 0.9 1 0.7
14 M 150 0.3 0.8 1 1
17 I 35 0 0.4 1 0.6
17 I 150 0.2 0 0.7 0.4
17 M 35 0 0.5 0.8 0.7
17 M 150 0.3 0.7 0.9 0.7

Mean 0.14 0.61 0.90 0.74
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Algorithms and Simulated Annealing have a quite good performance
with a success rate around 0.9 and 0.8 respectively, Multiple Random
Search slightly below with 0.65, with Random Search being the worst
with just 0.14.

Table 5. BIC: Distance

N Sigma t RandomSearch MRandomSearch GA SA

14 I 35 2.73 0 0 0
14 I 150 65.12 6.21 0 0
14 M 35 4.70 0 0 0.13
14 M 150 31.04 3.26 0 0
17 I 35 7.58 5.52 0.78 3.47
17 I 150 31.16 3.4 1.49 0.92
17 M 35 24.12 9.97 0 0
17 M 150 43.44 4.96 0.33 0.98

Mean 26.24 4.17 0.32 0.69

Tables 5 and 6 display the average distance from the global solution
in terms of the function to be maximized, it is based on the Criterion 6
discussed above. The tables show that when Random Search and Mul-
tiple Random Search fail in finding the best solution, the magnitude of
their error is bigger than Genetic Algorithms and Simulated Annealing.
Random Search has the worst performance, with an average distance of
25. The difference in the other three algorithms is more evident looking
at Table 5, rather than Table 6; nevertheless Multiple Random Search
preforms worse in both cases.

Table 6. AIC: Distance

N Sigma t RandomSearch MRandomSearch GA SA

14 I 35 2 0 0 0.03
14 I 150 65.69 12.72 12.72 0
14 M 35 6.34 0.1 0 0.3
14 M 150 25.86 3.71 0 0
17 I 35 13.13 5.20 0 8.85
17 I 150 24.48 7.34 1.64 0.9
17 M 35 22.95 6.23 2.49 3.74
17 M 150 31.93 3.86 0.33 2.16

Mean 24.05 4.90 2.15 2.03
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In the light of these results, it seems that GAs and SA clearly outper-
form the other two algorithms. However, this gap tends to shrink if one
looks at the average percentile in Tables 7 and 8.

Table 7. BIC: Percentile

N Sigma t RandomSearch MRandomSearch GA SA

14 I 35 0.999822998 1 1 1
14 I 150 0.999768066 0.9999939 1 1
14 M 35 0.999798584 1 1 0.9999939
14 M 150 0.999694824 0.9999817 1 1
17 I 35 0,999972534 0.9999924 0.999999 0.9999931
17 I 150 0.999742126 0.9999908 0.999995 0.9999924
17 M 35 0.999774170 0.9999916 1 1
17 M 150 0.999790955 0.9999931 0.999999 0.9999977

Mean 0.999796 0.999993 0.999999 0.999997

Although Random Search and Multiple Random Search have a lower
success rate, their solutions still lie well above the 95th percentile. There-
fore, if the best 0.05× 2Ni solutions are considered being a satisfactory
result, these two algorithms represent a good alternative given that they
require less iterations as shown in the following tables.

They display the efficiency measured according to Criterion 7. This
result show how the better performances of Genetic Algorithms and
Simulated Annealing are based on a larger number of iterations. As the
problem complexity increases the number of iterations increases too, but
with a lower rate; therefore with 14 variables they perform 0.22 and 0.35
out of the total 2Ni , but just 0.027 and 0.053 with N = 17.

Table 8. AIC: Percentile

N Sigma t RandomSearch MRandomSearch GA SA

14 I 35 0.99987793 1 1 0.9999878
14 I 150 0.99977417 0.9999873 0.999988 1
14 M 35 0.999621582 0.9999933 1 0.9999817
14 M 150 0.999755859 0.9999817 1 1
17 I 35 0.999827576 0.9999931 1 0.9999763
17 I 150 0.999815369 0.9999779 0.999995 0.9999947
17 M 35 0.999876404 0.9999962 0.999998 0.9999977
17 M 150 0.999847412 0.9999931 0.999999 0.9999969

Mean 0.999800 0.999990 0.999998 0.999992
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Table 9. BIC: Efficiency

N Sigma t RandomSearch MRandomSearch GA SA

14 I 35 0.006 0.060 0.220 0.350
14 I 150 0.006 0.052 0.220 0.350
14 M 35 0.006 0.054 0.220 0.350
14 M 150 0.006 0.053 0.220 0.350
17 I 35 0.001 0.010 0.027 0.053
17 I 150 0.001 0.009 0.027 0.053
17 M 35 0.001 0.009 0.027 0.053
17 M 150 0.001 0.009 0.027 0.053

Mean 0.003 0.03 0.12 0.20

Table 10. AIC: Efficiency

N Sigma t RandomSearch MRandomSearch GA SA

14 I 35 0.006 0.059 0.220 0.350
14 I 150 0.006 0.052 0.220 0.350
14 M 35 0.006 0.056 0.220 0.350
14 M 150 0.006 0.053 0.220 0.350
17 I 35 0.001 0.009 0.027 0.053
17 I 150 0.001 0.008 0.027 0.053
17 M 35 0.001 0.009 0.027 0.053
17 M 150 0.001 0.009 0.027 0.053

Mean 0.003 0.03 0.12 0.20

3.1.2 Relative performance evaluation. The procedure for
relative performance is similar to the one described in previous subsec-
tion. The main difference is that the complexity of the problem has been
increased by setting N = 35 for a total of 235 = 34,359,738,368 possible
models. Since it is not feasible to evaluate the full cumulative distri-
bution function, only a comparison in relative terms is possible. This
requires also a slight change in the steps of the Monte Carlo simulation.
A setting is still defined by a vector Θ = [N, tj∈1,2,

∑
l∈1,2] with N = 35,

t ∈ [70, 250] and
∑ ∈ [Ik,M ]. However, instead of generating the data

once for each setting, they are generated 50 times and algorithms are
run once for each generation, in order to still have 50 total values to
compute the summary statistics. Consequently, the criteria are slightly
different. Percentile and Percentile 99.5 can not be computed, the rank
is not out of 2Ni but out of a, the number of algorithms, finally M∗ is
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no longer the model at which the function reaches the global max but
simply the highest among the ones found by the algorithms.

Table 11 displays results for AIC while Table 12 for adjusted R2.
Results from the first table are in line with the one from previous sub-
section, in the sense that Genetic Algorithms and Simulated Annealing
perform better than the other two algorithms with the GAs being the
best most of the times.

Table 11. AIC

N Sigma t RandomSearch MRandomSearch GA SA

35 I 70 2156.2 2164.7 2171.1 2169.2 Fit
35 I 70 15.3 6.8 0.4 2.3 Dist
35 I 70 3.9 2.8 1.2 1.7 Rank
35 I 70 0 0.1 0.8 0.5 Best
35 I 70 0.000000014 0.000000067 0.000000314 0.000000877 Eff

35 I 250 7738 7755.3 7786.2 7781 Fit
35 I 250 52 34.7 3.8 9 Dist
35 I 250 3.8 3.2 1.3 1.7 Rank
35 I 250 0 0 0.7 0.3 Best
35 I 250 0.000000012 0.000000067 0.000000314 0.000000877 Eff

35 M 70 2035.9 2050.1 2069.7 2067.1 Fit
35 M 70 34.8 20.6 1.1 3.6 Dist
35 M 70 3.7 3.2 1.2 1.7 Rank
35 M 70 0 0 0.8 0.4 Best
35 M 70 0.000000014 0.000000070 0.000000314 0.000000877 Eff

35 M 250 7422.5 7470.9 7469.1 7490 Fit
35 M 250 78.6 30.2 5.1 11.1 Dist
35 M 250 4 2.6 1.4 1.9 Rank
35 M 250 0 0 0.8 0.3 Best
35 M 250 0.000000024 0.000000066 0.000000314 0.000000877 Eff

Table 12 shows one important point. When the function to maximize
has just one or very few local maxima, no matter how the problem is
complex in terms of number of possible solutions, all the algorithms will
have very similar results.

The main conclusions from both absolute and relative evaluations are
the followings. In absolute terms, SOA have quite satisfactory perfor-
mances. In relative terms GAs and SA seem to outperform the others,
with GAs having the best performance. Local search algorithms are
faster and might still represent a good alternative when having larger
set of satisfactory solutions. Nevertheless, they have a big pitfall that
make them less preferable – they cannot be controlled. GAs and SA in-
stead can be improved and better tuned (increasing the population or the
number of generations in GAs, and lowering the decaying factor for SA),
in case they do not provide satisfactory results. The last observation is
that the harder the problem, in terms of local solutions, the clearer the
difference in performance between local and global algorithms.
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Table 12. Adjusted R2

N Sigma t RandomSearch MRandomSearch GA SA

35 I 70 1.0 1.0 1.0 1.0 Fit
35 I 70 0 0 0 0 Dist
35 I 70 1 1 1 1 Rank
35 I 70 1 1 1 1 Best
35 I 70 0.000000011 0.000000059 0.000000314 0.000000877 Eff

35 I 250 1.0 1.0 1.0 1.0 Fit
35 I 250 0 0 0 0 Dist
35 I 250 1 1 1 1 Rank
35 I 250 1 1 1 1 Best
35 I 250 0.000000011 0.000000059 0.000000314 0.000000877 Eff

35 M 70 1.0 1.0 1.0 1.0 Fit
35 M 70 0 0 0 0 Dist
35 M 70 1 1 1 1 Rank
35 M 70 1 1 1 1 Best
35 M 70 0.000000012 0.000000060 0.000000314 0.000000877 Eff

35 M 250 1.0 1.0 1.0 1.0 Fit
35 M 250 0 0 0 0 Dist
35 M 250 1 1 1 1 Rank
35 M 250 1 1 1 1 Best
35 M 250 0.000000011 0.000000060 0.000000314 0.000000877 Eff

3.2 Real Data Analysis

Real data analysis is based on a popular dataset in return predictabil-
ity literature. The variables are the ones used in [6] plus some others
added by the author that represent other less known predictors available
in literature. The final dataset has 19 time series and contains monthly
observations of macro, financial and accounting variables that span from
January 1961 to December 2008. The total number of possible models is
524,288. Results for the functions described in Section 2 are displayed.
They are grouped into three categories according to the difficulty of the
problem. Table 13 and Table 14 show the result for BIC and AIC. They
confirm that Genetic Algorithms and Simulated Annealing perform bet-
ter and that performance differentials shrink towards zero when looking
at Percentile and Percentile 99.5

Table 15 show results for Mean Square Error and Table 16 for Ad-
justed R2, they represent easy maximization problem because all the
four algorithms are able to find the best solution out of the 524,288
available.

Table 17 displays results for Sign Criterion. It is apparently the hard-
est function to be maximized. Only Genetic Algorithms are able to
systematically find the global solutions against a success rate of 0.72,
0.14 and 0.08 of the other three algorithms.
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Table 13. BIC

RandomSearch MRandomSearch GA SA

Fitness 1165.95 1166.33 1166.39 1166.39
Rank 7 2.6 1 1
Percentile 1 1 1 1
Best 0.6 0.8 1 1
Percentile 99.5 1 1 1 1
Distance 0.44 0.06 0 0
Efficiency 0.0004 0.0014 0.0114 0.0109
Time 0.1 0.3 3.1 2.7

Table 14. AIC

RandomSearch MRandomSearch GA SA

Fitness 1142.82 1143.85 1143.85 1143.85
Rank 61.5 1 1 1
Percentile 0.9999 1 1 1
Best 0.86 1 1 1
Percentile 99.5 1 1 1 1
Distance 1.3 0 0 0
Efficiency 0.0004 0.0015 0.0114 0.0019
Time 0.001 0.009 0.027 0.053

Table 15. Mean Square Error

RandomSearch MRandomSearch GA SA

Fitness -0.0010 -0.0010 -0.0010 -0.0010
Rank 1 1 1 1.1
Percentile 1 1 1 1
Best 1 1 1 0.88
Percentile 99.5 1 1 1 1
Distance 0 0 0 0
Efficiency 0.0004 0.0015 0.0114 0.0143
Time 0.1 0.4 3.6 4.7

4. Conclusions

This paper deals with variable selection in linear regression models
using stochastic algorithms. Four algorithms (Random Search, Multi-
ple Random Search, Genetic Algorithms and Simulated Annealing) are
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Table 16. Adjusted R2

RandomSearch MRandomSearch GA SA

Fitness 0.4283 0.4283 0.4283 0.4283
Rank 1 1 1 1
Percentile 1 1 1 1
Best 1 1 1 1
Percentile 99.5 1 1 1 1
Distance 0 0 0 0
Efficiency 0.0004 0.0016 0.0114 0.0064
Time 0.1 0.3 3.2 2.9

Table 17. Sign Criterion

RandomSearch MRandomSearch GA SA

Fitness 0.756 0.765 0.770 0.769
Rank 12328.1 173.9 1 4.6
Percentile 0.9765 0.9997 1 1
Best 0.08 0.14 1 0.72
Percentile 99.5 0.6 1 1 1
Distance 0.01 0.01 0 0
Efficiency 0.0002 0.0007 0.0114 0.0095
Time 0.008 0.1 3.2 3.4

tested with respect to eight criteria on simulated and real data. Both
Monte Carlo and Real data analysis confirm the same results. In accor-
dance with the literature, Genetic Algorithms and Simulated Annealing
perform well in absolute terms with the former being the best in relative
terms. Contrary to previous evidence, performance differentials strongly
depend on the function to be maximized and on the measure used to
compare the algorithms. One limit of this study is that it restricts the
analysis to linear regression. It would be interesting in future studies
to investigate the algorithms’ behavior in more complicated problems
involving VAR or even nonlinear models.

References

[1] S. H. Chen, ed. Genetic Algorithms and Genetic Programming in Computational
Finance. Spring-Verlag, 2002.

[2] J. De Jong. An analysis of the beavior of a class of genetic adaptive systems.
Doctoral Dissertation, University of Michigan, 1975.

[3] M. A. Efroymson. Multiple Regression Analysis. Wiley, 1960.



232 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[4] E. I. George and R. E. McCulloch. Variable selection via Gibbs sampling. J. Am.
Stat. Assoc., 88(423):450–472, 1993.

[5] D. Goldberg. Genetic Algorithms in Search Optimization and Machine-Learning.
Addison-Wesley, 1989.

[6] A. Goyal and I. Welch. A comprehensive look at the empirical performance of
equity premium prediction. Rev. Financ. Stud., 21(4):1455-1508, 2008.

[7] I. Guyon and A. Elisseff. An introduction to variable and feature selection. J.
Mach. Learn., 3:1157-1182, 2003.

[8] R. Hocking. The analysis and selection of variables in linear regression. Biomet-
rics, 32:1–49, 1976.

[9] A. Hoerl and R. Kennard. Ridge regression: biased estimation for nonorthogonal
problems. Technometrics, 42(1):80–86, 2000.

[10] J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
press, 1974.

[11] S. Kirkpatrick. Optimization by simulated annealing: quantitative studies. J.
Stat. Phys., 34(5):975–986, 1984.

[12] G. P. McCabe. Principal variables. Technometrics, 26(2):34–67, 1984.

[13] A. Raftery, D. Madigan, and J. A. Hoeting. Bayesian model averaging for linear
regression models. J. Am. Stat. Assoc., 92(437):230–247, 1997.

[14] D. E. Rapach and W. E. Wohar. Forecasting the recent behavior of US busi-
ness fixed investment spending: an analysis of competing models. J. Forecasting,
26(1):33–51, 2007.

[15] G. E. Schwarz. Estimating the dimension of a model. Ann. Stat., 6(2):461–464,
1978.

[16] S.N Sivanandam and S. Deepa, Introduction to Genetic Algorithms. Springer,
2008.

[17] J. C. Spall. Introduction to Stochastic Search and Optimization. Wiley, 2003.

[18] J. H. Stock and M. W. Watson. Macroeconomic forecasting using diffusion in-
dexes. J. Bus. Econ. Stat., 20(2):147–162, 2002.

[19] R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal Stat.
Soc. B, 58(1):65–83, 1996.

[20] P. Winker and M. Gilli. Applications of optimization heuristics to estimation
and modelling problems. Comput. Stat. Data An., 52(15):19–31, 2007.

[21] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
IEEE T. Evol. Comput., 1 (1):67–82, 1997.


